
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022 1

Learning Performance Graphs from Demonstrations
via Task-Based Evaluations

Supplemental Material
Aniruddh G. Puranic, Jyotirmoy V. Deshmukh, and Stefanos Nikolaidis

I. SIGNAL TEMPORAL LOGIC

Signal Temporal Logic (STL) is a real-time logic, generally
interpreted over a dense-time domain for signals whose values
are from a continuous metric space (such as Rn). The basic
primitive in STL is a signal predicate µ that is a formula of
the form f(x(t)) > 0, where x(t) is the tuple (state, action)
of the demonstration x at time t, and f maps the signal
domain D = (S × A) to R. STL formulas are then defined
recursively using Boolean combinations of sub-formulas, or
by applying an interval-restricted temporal operator to a sub-
formula. The syntax of STL is formally defined as follows:
φ ::= µ | ¬φ | φ ∧ φ | GIφ | FIφ | φUIφ. Here, I = [a, b]
denotes an arbitrary time-interval, where a, b ∈ R≥0. The
semantics of STL are defined over a discrete-time signal x
defined over some time-domain T. The Boolean satisfaction
of a signal predicate is simply True (⊤) if the predicate is
satisfied and False (⊥) if it is not, the semantics for the
propositional logic operators ¬,∧ (and thus ∨,→) follow the
obvious semantics. The following behaviors are represented
by the temporal operators:

• At any time t, GI(φ) says that φ must hold for all
samples in t+ I .

• At any time t, FI(φ) says that φ must hold at least once
for samples in t+ I .

• At any time t, φUIψ says that ψ must hold at some time
t′ in t+ I , and in [t, t′), φ must hold at all times.

Definition 1 (Quantitative Semantics for Signal Temporal
Logic). Given an algebraic structure (⊕,⊗,⊤,⊥), we define
the quantitative semantics for an arbitrary signal x against
an STL formula φ at time t as in Table I.

A signal satisfies an STL formula φ if it is satisfied at
time t = 0. Intuitively, the quantitative semantics of STL
represent the numerical distance of “how far” a signal is
away from the signal predicate. For a given requirement φ,
a demonstration or policy d that satisfies it is represented
as d |= φ and one that does not, is represented as d ̸|= φ.
In addition to the Boolean satisfaction semantics for STL,
various researchers have proposed quantitative semantics for
STL, [1], [2] that compute the degree of satisfaction (or robust

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
University of Southern California Institutional Review Board.

The authors are with the Computer Science Department,
University of Southern California, USA {puranic, jdeshmuk,
nikolaid}@usc.edu

Digital Object Identifier (DOI): 10.1109/LRA.2022.3226072

TABLE I
QUANTITATIVE SEMANTICS OF STL

φ ρ (φ,x, t)

true/false ⊤/⊥
µ f(x(t))
¬φ −ρ (φ,x, t)

φ1 ∧ φ2 ⊗(ρ (φ1,x, t) , ρ (φ2,x, t))
φ1 ∨ φ2 ⊕(ρ (φ1,x, t) , ρ (φ2,x, t))
GI(φ) ⊗τ∈t+I(ρ (φ,x, τ))
FI(φ) ⊕τ∈t+I(ρ (φ,x, τ))
φUIψ ⊕τ1∈t+I(⊗(ρ (ψ,x, τ1) ,⊗τ2∈[t,τ1)(ρ (φ,x, τ2)))

satisfaction values) of STL properties by traces generated by
a system. In this work, we use the following interpretations
of the STL quantitative semantics: ⊤ = +∞, ⊥ = −∞, and
⊕ = max, and ⊗ = min, as per the original definitions of
robust satisfaction proposed in [1], [3].

Using these semantics allows a demonstration that satisfies
a specification to have non-negative robustness (score) for that
specification, and a demonstration that violates it will have a
negative robustness (score). We use STL in our work because
it offers a rich set of quantitative semantics (Definition 1 that
are suitable for formal analysis and reasoning of systems.
The requirements defined with STL are grounded w.r.t. the
actual description of the tasks/objectives. Furthermore, STL
allows designers or users to specify constraints that evolve
over time and define causal dependencies among tasks. Their
semantics allow for the definition of non-Markovian rewards
and accurately evaluating trajectories and policies for RL.

In our setting, a task can consist of multiple specifications.
However, the robustness of each specification may lie on dif-
ferent scales. Consider for example, a driving scenario, where
one specification concerns the speed of the vehicle, while
another concerns the steering angle. Since the measurement
scale of speed is significantly larger than angle (e.g., 60 mph vs
1.6◦), the robustness of the corresponding specifications also
differs significantly. Furthermore, if the maximum robustness a
car can achieve is 60 and 1.6 for the respective specifications,
then directly performing summation on them would induce
bias towards the speed specification. To avoid this bias, the
robustness ranges need to be normalized. Some common
normalization techniques are surveyed in [4]. We use the tanh
hyperbolic smoothing in our work to bound the robustness
values.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

II. DERIVATIONS AND PROOFS

A. Space of all directed graphs

In regard to the number of different orderings in extracting
local graphs, given n specifications, the number of permuta-
tions or arrangements is n!. For each permutation, there is 1
operator from op = {>,=} that can be placed in between any
two specifications (e.g., a > b). The number of such “places”
is n − 1 and hence the number of operator arrangements for
each permutation is 2n−1 or |op|n−1 in general. However, we
can observe that one of the arrangements for each permutation
consists of the ‘=’ operator appearing in all the “places”.
For example, a = b = c is the same as the permutation
b = a = c and so on. Hence, all the n! permutations share this
common/redundant ordering, and so we need to remove all but
one of them. Thus, the total number of unique orderings over
all the permutations is n!·|op|n−1−n!+1 = n!·[|op|n−1−1]+1.
Following the use of directed graphs to reduce this search
space, we first need to derive the number of possible directed
graphs. For a directed graph without self-loops, there are 3
possible edge categories between any two nodes - no edge,
incoming (outgoing from other) and outgoing (incoming to
other). In the worst case, the maximum number of edges
in a DAG is n(n − 1)/2 edges and so the total number of
possible directed graphs is 3n(n−1)/2. This includes all the
cycles formed in the directed graph, so we then need to
compute and subtract the number of cycles to obtain the actual
space of DAGs. For a directed graph with n vertices, a cycle
comprises at least 3 vertices because we allow only 1 edge to
exist between any two nodes. So, adding the number of cycles,
we get:

n∑
k=3

(
n

k

)
=

n∑
k=0

(
n

k

)
−

2∑
k=0

(
n

k

)
= 2n − [

n!

0!(n− 0)!
+

n!

1!(n− 1)!
+

n!

2!(n− 2)!
]

= 2n − [1 + n+ n(n− 1)/2]

We can then reverse the edges and obtain another 2n − [1 +
n+n(n−1)/2] cycles, therefore the total number of cycles is
twice this number = 2n+1− (n2+n+2). Finally, the number
of valid directed graphs is 3n(n−1)/2− [2n+1−(n2+n+2)] =
3n(n−1)/2− 2n+1+n2+n+2, which is still exponential, but
has eliminated the factorial component of the search space.

B. Proof of Lemma and Theorem

We provide proofs for the Lemma and Theorem stated in
the main letter.

The lemma states: For a DAG, the weights associated with
the nodes computed via (1), are non-negative.

w(φ) = |Φ| − |ancestor(φ)| (1)

Proof Sketch. From the LfD-STL framework, the weights for
specifications represented by the DAG nodes are given by
(1). We know that |Φ| = n and ancestor(φ) is a set whose
cardinality is non-negative. In a DAG, there are no cycles
and hence |ancestor(φ)| is an integer in [0, n − 1]. By this
equation, the minimum weight (i.e., worst-case) for any node

representing a specification φ occurs when that node is a
leaf and all other n − 1 nodes are its ancestors. Therefore,
w(φ) = |Φ|−ancestor(φ) =⇒ w(φ) = n−(n−1) = 1 ≥ 0.
Similarly, the maximum value of w(φ) is n, i.e., there are
no ancestors when φ is one of the root nodes in the DAG.
This non-negative nature of weights also holds true when the
weights are normalized via a softmax function since it is
used to represent a probability distribution that lies in the
interval [0, 1].

Using this lemma, we derive the proof for the theorem as
described below.

The theorem states: For any two demonstrations ξ1 and ξ2
in an environment, the partial ordering ξ1 ⪯ ξ2 is preserved
by PeGLearn.

Proof. Recall that for any two demonstrations ξ1 and ξ2 in an
environment, if ξ1 ⪯ ξ2, then the cumulative rating/scores
are such that rξ1 ≤ rξ2 . Also recall the notation that
ρξi = [ρi1, · · · , ρin]T . Let there be n specifications for the
environment, then for these two demonstrations, we have:

Z =

[
ρ11 ρ12 · · · ρ1n
ρ21 ρ22 · · · ρ2n

]
and w = [w1, w2, ..., wn]

T . W.l.o.g., let ξ2 be at least as
good as ξ1, i.e., we have ρ1j ≤ ρ2j ,∀j ∈ {1, · · · , n}. The
cumulative scores for the demonstrations are rξi = ρξi

T ·w
where i ∈ {1, 2}. For any constant wj ≥ 0,

wj · ρ1j ≤ wj · ρ2j

=⇒
n∑

j=1

wj · ρ1j ≤
n∑

j=1

wj · ρ2j

=⇒ ρξ1

T ·w ≤ ρξ2

T ·w
=⇒ rξ1 ≤ rξ2

This holds iff wj ≥ 0,∀wj ∈ w

Once the global DAG is learned, the weights for specifica-
tions (nodes) are computed via (1). From the above Lemma,
we have shown that these weights are all non-negative. Since
the LfD-STL framework ranks the demonstrations by their
cumulative scores, this guarantees that better demonstrations
are always ranked higher than the others, i.e., a partial order is
created, and also provide justification for the use of DAGs.

III. ADDITIONAL DETAILS ON EXPERIMENTS

The STL formulas in our discrete-world and 2D driving
experiments were specified and evaluated using Breach [5],
and the specifications for the MiR100 and CARLA experi-
ments were evaluated in RTAMT-STL library [6]. Note that
the complexity of evaluating a trajectory w.r.t. a temporal
logic specification is polynomial in the length of the signal
and specification [7]. However, tools such as Breach and
RTAMT are capable of producing linear-time complexity when
evaluating In the 2D driving simulator experiment, we used the
same neural network architecture as in our prior work [8] that
was trained using PyTorch. All experiments were performed
on a desktop machine with AMD Ryzen 7 3700X 8-core CPU
and Nvidia RTX 2070-Super GPU.

PURANIC et al.: LFD WITH PERFORMANCE GRAPHS 3

A. Discrete-World

We use a grid environment, based on the OpenAI Gym
Frozenlake environment, consisting of a set of states S =
{start, goals, obstacles} of varying grid sizes such as: 5×5,
8 × 8 and 15 × 15 and randomizing the obstacle locations.
Stochasticity in the range p ∈ [0.1, 0.8] was introduced to
the transition dynamics. This environment was created using
PyGame library where users provided demonstrations in the
PyGame GUI by clicking on their desired states with the
task to reach the goal state from start without hitting any
obstacles. Due to the stochasticity, unaware to the users, their
clicked state may not always end up at the desired location.
The user then proceeds to click from that unexpected state
till they quit or reach the goal. Just as in [8], [9], we used
Manhattan distance as the distance metric and formulated the
STL specifications:

1) Avoid obstacles at all times (hard requirement):
φ1 := G[0,T](dobs[t] ≥ 1), where T is the length of a
demonstration and dobs is the minimum distance of robot
from obstacles computed at each step t.

2) Eventually, the robot reaches the goal state (soft require-
ment): φ2 := F[0,T](dgoal[t] < 1), where dgoal is the
distance of robot from goal computed at each step. φ2

depends on φ1.
3) Reach the goal as fast as possible (soft requirement):

φ3 := F[0,T](t ≤ Tgoal), where Tgoal is the upper bound
of time required to each the goal, which is computed by
running breadth-first search algorithm from start to goal
state, since the shortest policy must take at least Tgoal
to reach the goal. φ3 depends on both φ1 and φ2 in the
DAG.

The PeGLearn algorithm was evaluated against (i) user-
defined DAGs, (ii) MaxEntropy IRL, and (iii) MaxCausalEn-
tropy IRL. Once rewards were extracted from each algorithm
for all environment settings, we used Double Q-Learning [10],
as it is suited for stochastic settings, with the modifications
to the algorithm at 2 steps (reward update and termination)
as described by [9]. The number of episodes varied based
on environment complexity such as grid size, number and
locations of obstacles. The discount factor γ was set to 0.8
and ϵ-greedy strategy with decaying ϵ for actions was used.
A learning rate of α = 0.1 was found to work reasonably
well after analyzing hyperparameters. Our evaluations over
100 trials showed that policies independently learned from
PeGLearn and manually-defined DAGs were able to achieve
a task success rate of 80% and 81% respectively for the
environments with 0.2 stochasticity. However, the execution
time of PeGLearn was within a 2-second increment over that
of LfD-STL with manually-specified DAGs.

B. 2D Driving Simulator

For this experiment, we used the same kinematic model for
a car, described by the following equations:

ẋ = v · cos(θ) +N (0, σ2); ẏ = v · sin(θ) +N (0, σ2)

v̇ = u1 · u2; θ̇ = v · tan(ψ); ψ̇ = u3

Fig. 1. Demonstrations collected for the 2D car simulator.

where x and y represent the XY position of the car; θ is
the heading; v is the velocity; u1 is the input acceleration; u2
is the gear indicating forward (+1) or backward (-1); u3 is
the input to steering angle ψ. The state of the car at time
t is given by St = [x, y, θ, v, ẋ, ẏ, θ̇, v̇]T . Demonstrations
are provided by users via an analog Logitech G29 steering
with pedal controller or via keyboard inputs. For comparison
with prior work, we utilized the same 8 (6 good and 2 bad)
demonstrations recorded earlier (Fig. 1).

The distance metric used in this space is Euclidean. The
specifications for this scenario are as follows:

1) Avoid obstacles at all times (hard requirement):
φ1 := G[0,T](dobs[t] ≥ dSafe), where T is the length
of a demonstration and dobs is the minimum distance
of the car from H computed at each step t. For our
experiments, we used dSafe = 3 units.

2) Always stay within the workspace/drivable region (hard
requirement): φ2 := G[0,T]((x,y) ∈ Box(30,25)),
where the workspace is defined by a rectangle of
dimensions 30 × 25 square units. The Box is an
indicator for the real-valued data in the OpenAIGym
library.

3) Eventually, the robot reaches the goal state (soft require-
ment): φ3 := F[0,T](dgoal[t] < δ), where dgoal is the
distance between centers of car and goal computed at
each step t and δ is a small tolerance when the center of
the car is “close enough” to the goal’s center. φ3 depends
on φ1 and φ2 in the DAG.

The rewards are assigned to states by modeling the states
s as samples of multi-variate Gaussian distribution N (µ, σ2I)
where µ = s and σ represents the deviations in noise levels,
that can be tuned. Here, we use σ = 0.03. For each s, we
generated k = 20 samples to represent the reachable set and
assigned stochastic rewards as described in [8]. The neural
network used for regressing the rewards consisted of 2 layers
with 200 neurons in each layer that were activated by ReLU.
The reward inference for both PeGLearn and manual-DAG
baseline had execution times of less than 30 seconds.

C. MiR100 Navigation Experiment

Given the 30 demonstrations, PeGLearn was able to extract
the rewards within 30 seconds. The expert rewards that were
used for this task comprised of the following components: (i)
Euclidean distance between the robot and goal, (ii) power

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

Fig. 2. Teleoperation demonstrations in CARLA.

used by the robot motors for linear and angular velocities,
(iii) distance to obstacles to detect collisions, and (iv) an
optional penalty if the robot exited the environment boundary
walls. The PPO agent that was trained separately on the
expert and PeGLearn rewards used the default architecture
and hyperparameter settings from [11]. Both training sessions
were run for 3e6 steps, with each session lasting about 30
hours on our hardware. Likewise, the D4PG agent was trained
independently on each reward function, under similar training
conditions (hyperparameters shown in Table II), with each
training session lasting about 12 hours. Each of these RL
agents were then evaluated on 100 test runs (trials) to compute
the success rates.

TABLE II
D4PG HYPERPARAMETERS.

Hyperparameter Value

Actors 5
Learners 1

Actor MLP 256 → 256
Critic MLP 256 → 256

N-Step 5
Atoms 51
Vmin -10
Vmax 10

Exploration Noise 0.3
Discount Factor 0.99
Mini-batch Size 256

Actor Learning Rate 5e-4
Critic Learning Rate 5e-4

Memory Size 1e6
Learning Batch 64

D. CARLA-AMT Survey

The demonstrations for this experiment used the same
analog hardware for the 2D car simulator (Fig. 2). The formal
description of the STL task specifications for the CARLA
simulator are as follows:

1) Keeping close to the center of the lane:
φ1 := G[0,T](d

lane
t ≤ δ), where T is the length of a

demonstration, dlanet is the distance of car from the center
of the lane at each step t and δ is a small tolerance factor.

The width of a typical highway lane in the US is 12 ft
(3.66 m) 1 and the average width of a big vehicle (e.g.,
SUV or pickup truck) is 7 ft (2.13 m) 1, which leaves
about 2.5 ft (0.76 m) of room on either side of the vehicle.
Hence, we chose to use 1 ft (0.3 m) as the tolerance factor
to accurately track the lane center while also providing a
small room for error.

2) Maintaining speed limits:
φ2 := G[0,T](vmin ≤ vt ≤ vmax), where vt is speed of
the ego/host car at each timestep t, and vmin and vmax

are the speed limits. Since it is a US highway scenario,
the vmax = 65 mph and vmin = 0 mph.

3) Maintaining safe distance from any lead vehicle:
φ3 := G[0,T](safety flagt ≤ 0),
where safety flagt is a binary signal that outputs 0 if
the ego is safe (i.e., there is no vehicle directly in front
of the ego in the same lane whose distance is closer than
some threshold dsafe) and 1 otherwise. In OpenAI Gym-
CARLA, the safe distance was set to 15 m.

φ1 φ2

φ3

δ21

δ
3
1 δ 2

3

(a) Batch 1

φ1 φ2

φ3

δ21

δ
3
1 δ 3

2

(b) Batch 2

φ1 φ2

φ3

(c) Batch 3

Fig. 3. DAGs for the CARLA simulator experiment.

For the online AMT survey, we initially recruited 150
human participants and took numerous measures to ensure
reliability of results. We posed a control question at the end to
test their attention to the task, and eliminated data associated
with the wrong answer, including incomplete data, resulting
in 146 samples. All participants had an approval rating over
98% and the demographics are as follows: (i) 73 males, 72
females, 1 other, (ii) participant age ranged from 22 to 79 with
an average age of 40.67, and (iii) average driving experience
of 22.4 years. Our survey collected the following information
from each participant:
• Participant information: Number of years of driving expe-

rience, age, gender and experience with video games.
• Ratings on a scale of 1 (worst) - 5 (best) for the

queries/specifications: (i) driver staying close to the lane
center, (ii) driver maintaining safe distance to lead vehicle(s)
and (iii) driver respecting speed limits of the highway.

• Ratings on a scale of 1 (lowest) - 3 (highest) on the overall
driving behavior shown in these 5 videos and also how the
participants would prioritize each of the specifications if
they were driving in that scenario.
The web-based questionnaire showed a batch of 5 videos to

a participant, where each video was accompanied by the three
questions regarding the task specifications. A still of one of
the videos is shown in Fig. 4. Users were presented with a
dropdown menu in which each option was a Likert rating

1Based on USDOT highway and US vehicle specifications (e.g., Ford F-
150).

PURANIC et al.: LFD WITH PERFORMANCE GRAPHS 5

Fig. 4. A frame from one of the survey videos.

from 1 (lowest) to 5 (highest). We then presented users with
a question to rate the overall behavior of all 5 videos in the
batch w.r.t. the task specifications on a scale of 1 (lowest) to
3 (highest). Finally, a control question was posed regarding
the color of the car shown in the videos to test the attention
of the users, since the colors of cars were same across all 15
videos. The graphs for each batch obtained via PeGLearn is
shown in Fig. 3.

The overall orderings from human experts and our Pe-
GLearn algorithm for each AMT survey batch are shown in
Fig. 5. To compare the ratings, we first normalized all the
human and PeGLearn ratings to be in the range [0, 3]. The
user bars correspond to the human expert ratings while auto
represents our algorithm rating, which is deterministic and
hence there are no error bars.

IV. JIGSAWS (SURGICAL ROBOT DATASET)
To show the generalizability of our method to performance

assessment metrics beyond those induced by temporal logics,
we evaluated it on human ratings (e.g., Likert scale) provided
for various robotic surgical tasks [12] performed on a Da
Vinci Surgical robot system. As described in the dataset, an
expert surgeon provided evaluations or ratings for 8 different
surgeons with various expertise levels on 3 basic surgical tasks
- knot-tying, needle-passing and suturing. There are 6 spec-
ifications for evaluating the performance of surgeons on the
tasks and the ratings are measured on a scale from 1 (lowest)
to 5 (highest) for each specification. The 6 specifications or
evaluation criteria are:

1) Respect for tissue (TR) - force exerted on tissue.
2) Suture/needle handling (SNH) - control while tying knots.
3) Time and motion (TM) - fluent motions and efficient.
4) Flow of operation (FO) - planned approach with mini-

mum interruptions between moves.
5) Overall performance (P).
6) Quality of final product (Q).
Using this rating scheme, our method was able to generate

a performance-graph for each class of expertise as shown in
Fig. 6 for the knot-tying task. If the expertise levels were
unknown, then the generated graph would be as indicated in
Fig. 6d. We obtained similar performance graphs for the other
2 surgical tasks - needle-passing and suturing. This shows
how human evaluations can be used in environments such
as these where it is difficult even for experts to express the
tasks in a formal language. From the graphs, we can see that
all 3 categories of surgeons showed maximum performance
on (Q) and (TM). However, there were differences in the
other specifications. For example, experts had a higher rating

of (P) over (TR) compared to intermediates. One possible
explanation for this is that experts typically perform multiple
consecutive surgeries, and so they optimize on the (P) and
(FO) aspects compared to (TR), while the intermediate-level
surgeons are trainees who are still learning the nuances of
surgeries and are focusing more on the qualitative aspects such
as (TR) over quantity and speed. Similar reasoning can be
applied to each category of surgeons using these DAGs.

Remark. We acknowledge that providing individual ratings
for every demonstration-specification pair is tedious since the
complexity of manually specifying the performance graph is
exponential as elaborated in Appendix II. This is because one
needs to take into account, not just the labels or ratings,
but also the orderings (permutations) among those labels. In
other words, a user needs to assign O(mn) ratings and also
compare them with different permutations of those ratings,
i.e., creating relative priorities to specify the graph, which
is exponential in O(n2). Thus, manually defining the graphs
results in a very large complexity as shown. Our method
significantly eliminates this complex manual labor by using
only minimal inputs from users as it is much easier to provide
individual labels than having to compare with all permutations
of the labels. To even further reduce human inputs, a potential
solution we will consider for future work is to use deep
temporal learning methods to learn from existing labeled data
and predict the labels for newer demonstrations. We argue that
some form of human feedback would be necessary to provide
formal guarantees in learning rewards since it provides a
ground truth baseline.

REFERENCES

[1] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, 2009.

[2] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quanti-
tative monitoring of STL with edit distance,” Formal Methods in System
Design, vol. 53, no. 1, 2018.

[3] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010.

[4] A. Dhonthi, P. Schillinger, L. D. Rozo, and D. Nardi, “Study of signal
temporal logic robustness metrics for robotic tasks optimization,” CoRR,
vol. abs/2110.00339, 2021.

[5] A. Donzé, “Breach, A toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification CAV, 2010.

[6] D. Ničković and T. Yamaguchi, “Rtamt: Online robustness monitors
from stl,” in Automated Technology for Verification and Analysis, 2020.

[7] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[8] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from
demonstrations using signal temporal logic,” in IEEE Robotics and
Automation Letters (RA-L), 2021.

[9] ——, “Learning from demonstrations using signal temporal logic,” in
CoRL, 2020.

[10] H. Hasselt, “Double q-learning,” in NIPS, 2010.
[11] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and

N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[12] Y. Gao, S. Vedula, C. Reiley, N. Ahmidi, B. Varadarajan, H. C. Lin,
L. Tao, L. Zappella, B. Béjar, D. Yuh, C. C. Chen, R. Vidal, S. Khu-
danpur, and G. Hager, “Jhu-isi gesture and skill assessment working set
(jigsaws): A surgical activity dataset for human motion modeling,” in

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

(a) Batch A (b) Batch B (c) Batch C

Fig. 5. Comparison of specification orderings between humans and PeGLearn.

TR SNH

TM FO

Q P

(a) Experts

TR SNH

TM FO

Q P

(b) Intermediates

TR SNH

TM FO

Q P

(c) Novices

TR SNH

TM FO

Q P

(d) Cumulative

Fig. 6. DAGs for the Knot-Tying task. (a)-(c) DAG for each level of expertise: Experts, Intermediates and Novices respectively. (d) DAG for all surgeons,
without discriminating expertise levels.

Modeling and Monitoring of Computer Assisted Interventions (M2CAI)
– MICCAI Workshop, 2014.

	Signal Temporal Logic
	Derivations and Proofs
	Space of all directed graphs
	Proof of Lemma and Theorem

	Additional Details on Experiments
	Discrete-World
	2D Driving Simulator
	MiR100 Navigation Experiment
	CARLA-AMT Survey

	JIGSAWS (Surgical Robot Dataset)
	References

