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Abstract— In this document, we cover the quantitative se-
mantics of Signal Temporal Logic (STL) in Appendix I, theory
related to affine transformations in rewards in Appendix II,
and all details of experiments in Appendix III.

APPENDIX I
SIGNAL TEMPORAL LOGIC

Definition 1.1 (Quantitative Semantics): Given an alge-
braic structure (⊕,⊗,⊤,⊥), we define the quantitative se-
mantics for an arbitrary signal x against an STL formula φ
at time t as in Table I.

TABLE I
QUANTITATIVE SEMANTICS OF STL

φ ρ (φ,x, t)

true/false ⊤/⊥
µ f(x(t))
¬φ −ρ (φ,x, t)

φ1 ∧ φ2 ⊗(ρ (φ1,x, t) , ρ (φ2,x, t))
φ1 ∨ φ2 ⊕(ρ (φ1,x, t) , ρ (φ2,x, t))
GI(φ) ⊗τ∈t+I(ρ (φ,x, τ))
FI(φ) ⊕τ∈t+I(ρ (φ,x, τ))
φUIψ ⊕τ1∈t+I(⊗(ρ (ψ,x, τ1) ,⊗τ2∈[t,τ1)(ρ (φ,x, τ2)))

A signal satisfies an STL formula φ if it is satisfied at time
t = 0. Intuitively, the quantitative semantics of STL represent
the numerical distance of “how far” a signal is away from the
signal predicate. For a given requirement φ, a demonstration
or policy d that satisfies it is represented as d |= φ and one
that does not, is represented as d ̸|= φ. In addition to the
Boolean satisfaction semantics for STL, various researchers
have proposed quantitative semantics for STL, [1], [2] that
compute the degree of satisfaction (or robust satisfaction
values) of STL properties by traces generated by a system.
In this work, we use the following interpretations of the STL
quantitative semantics: ⊤ = +∞, ⊥ = −∞, and ⊕ = max,
and ⊗ = min, as per the original definitions of robust
satisfaction proposed in [1], [3].

APPENDIX II
DERIVATIONS AND PROOFS

As mentioned in the main paper, we show that applying
affine transformations to the reward function do not change
the optimal policy. Particularly, we are concerned with scal-
ing and shifting the rewards by a constant factor.

Lemma 2.1: The optimal policy is invariant to affine trans-
formations in the reward function.
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Proof: [Proof Sketch] From [4], we have the definition
of the Q function as follows, for the untransformed reward
function R:

Q(s, a)
.
= E

[ ∞∑
k=0

γk ·R(s, a)t+k+1|St = s,At = a

]
(1)

Q(s, a)
.
= R(s, a) + γ

∑
s′

P (s, a, s′)max
a′

Q(s′, a′) (2)

We consider two cases of reward function affine transfor-
mations in our work: (a) scaling by a positive constant and
(b) shifting by a constant. In both these cases, our objective
is to express the new Q function in terms of the original.
Note that we abbreviate R(s, a) to just R for simplicity.

Case (a): Scaling R by a positive constant: Let the
scaled reward function be defined as R′ = c ·R, c > 0. The
new Q function is then

Q′(s, a)
.
= E

[ ∞∑
k=0

γk ·R′
t+k+1|St = s,At = a

]

Q′(s, a) = E

[ ∞∑
k=0

γk · c ·Rt+k+1|St = s,At = a

]

Q′(s, a) = c · E

[ ∞∑
k=0

γk ·Rt+k+1|St = s,At = a

]
Q′(s, a) = c ·Q(s, a)

Thus we see that the new Q function scales with the scaling
constant.

From Equation 2 and by later substituting for Q′ from the
above result, we have,

Q′(s, a)
.
= R′(s, a) + γ

∑
s′

P (s, a, s′)max
a′

Q′(s′, a′)

c ·Q(s, a) = c ·R(s, a) + γ
∑
s′

P (s, a, s′)max
a′

(c ·Q(s′, a′))

c ·Q(s, a) = c ·R(s, a) + cγ
∑
s′

P (s, a, s′)max
a′

·Q(s′, a′)

Q(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)max
a′

·Q(s′, a′)

Thus the Bellman equation holds indicating that the policy
is invariant to scaling by a positive constant.

Case (b): Shifting R by a constant: Let the shifted
reward function be defined as R′ = R + c. The new Q



function is then

Q′(s, a)
.
= E

[ ∞∑
k=0

γk ·R′
t+k+1|St = s,At = a

]

Q′(s, a) = E

[ ∞∑
k=0

γk · (Rt+k+1 + c)|St = s,At = a

]

Q′(s, a) = E

[ ∞∑
k=0

γk ·Rt+k+1|St = s,At = a

]
+

∞∑
k=0

γkc

Q′(s, a) = Q(s, a) +
c

1− γ

Thus we see that the new Q values get shifted by the
constant.

From Equation 2 and by later substituting for Q′ from the
above result, we have,

Q′(s, a)
.
= R′(s, a) + γ

∑
s′

P (s, a, s′)max
a′

Q′(s′, a′)

Q(s, a) +
c

1− γ
= R(s, a) + c

+ γ
∑
s′

P (s, a, s′)max
a′

(
Q(s′, a′) +

c

1− γ

)
Q(s, a) +

c

1− γ
= R(s, a) + c

+ γ
∑
s′

P (s, a, s′)max
a′

Q(s′, a′)

+ γ
∑
s′

P (s, a, s′)
c

1− γ

Q(s, a) +
c

1− γ
= R(s, a) + γ

∑
s′

P (s, a, s′)max
a′

Q(s′, a′)

+ c+
cγ

1− γ

Q(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)max
a′

·Q(s′, a′)

Thus the Bellman equation holds indicating that the policy
is invariant to shifting by a constant.

Therefore, any combination of scaling or shifting does not
affect the optimal policy in our work. Similarly, the optimal
policy is shown to be invariant towards reward shaping with
potential functions [5].

APPENDIX III
EXPERIMENT DETAILS

This section describes additional details about the experi-
ments such as the STL task specifications, hyperparameters,
training and evaluation results. The hyperparameters for all
experiments, barring Frozenlake, are provided in Table II.

A. Task - Discrete-Space Frozenlake

We make use of the Frozenlake (FL) deterministic envi-
ronments from OpenAI Gym [6] that consist of a grid-world
of sizes 4x4 or 8x8 with a reach-avoid task. Informally, the
task specifications are (i) eventually reaching the goal, (ii)
always avoid unsafe regions and (iii) take as few steps as

possible. In these small environments m = 5 demonstrations
of varying optimality are manually generated. We use A2C
as the RL agent and show the training results in Fig. 1. The
left figures show the statistics of the rollout PGAs and the
evolution of weights over time. The right figures show the
rewards accumulated and episode lengths.

We see from the left figures, that initially, the non-
uniform weights of specifications correspond to the sub-
optimal demonstrations. And over time, the weights all
converge to 1/3 indicating that there are no edges in the
final DAG, while the PGAs of rollouts from the final policy
are maximum, as hypothesized. Since the environments are
deterministic, the final policy achieve a 100% success rate.
Since the task can be achieved even with IRL-based methods,
we compare the amount of demonstrations required. Under
identical conditions, the minimum number of demonstrations
used by MCE-IRL are 50 for 4x4 grid and 300 for 8x8 grid.
The algorithm in [7] uses over 1000 demonstrations in the
8x8 grid, even though they use temporal logic specifications
similar to ours. This clearly suggests that the choice of the
reward inference algorithm plays a significant role in sample
complexity. This is due to the unsafe regions being scattered
over the map, requiring the desirable dense features to appear
very frequently.

B. Task - Reaching Pose

The end-effector of a Franka Panda robot [8] is required to
reach the target pose as quickly as possible, the specifications
for which are given as: φ1 := F(d < δ) and φ2 := G(t <
T ), where d is the l2-norm of the difference between the end-
effector and target poses, δ is a small threshold to determine
success, and T is the desired time in which the target must
be achieved. For evaluation on a more precise environment,
we use a surgical robot environment - SURROL [9] that
is built on the da Vinci Surgical Robot Kit [10]. In this
common surgical task, a needle is placed on a surface and the
goal is to move the end-effector towards the needle center.
The specifications for this task follow the same template
above, however, the threshold is very small, i.e., δ = 0.025,
requiring highly precise movements. The reward function
was modeled neural network and the RL agent used SAC [11]
with hindsight experience replay (HER) [12]. To validate
reproducibility, the training and evaluation was performed
over 5 random seeds using the same 5 demonstrations. The
results for both these environments are shown in Fig. 2. The
first column shows the PGA over time or cycles (note the
scale of y-axis). The learned policies in both environments
achieve have PGA ≈ 2 since there are 2 specifications.
The second column represents the specification weights. In
the surgical task, the final weights are uniform as desired
due to the small room for error, while the Panda task
has a larger threshold for completion which affects the
resolution of the smooth STL semantics, though all tasks are
completed successfully. The hyperparameters for both tasks:
Panda-Reach and Needle-Reach, were nearly identical. The
specifications for both these tasks are:

1) Reaching the target pose: φ1 :=



(a) FL4x4 Weights

(b) FL4x4 Training Summary

(c) FL8x8 Weights

(d) FL8x8 Training Summary

Fig. 1. Results for the 4x4 and 8x8 Frozenlake environments.

F(∥eepose − targetpose∥ ≤ δ), where ee indicates
the end-effector and δ is the threshold used to
determine success. For Panda-Reach, δ = 0.2 and for
Needle-Reach, δ = 0.025.

2) Reaching the target as quickly as possible: φ2 :=
G(t <= 50), where t is the time when the end-effector
reaches the target.

(a) Panda-Reach

(b) Needle-Reach

Fig. 2. Summary of training and evaluations for the pose-reaching tasks.

In both tasks, using just 5 demonstrations, AL-STL
achieved over 99% mean success rate in both, training (right
figures) and evaluations; 5 random seeds were used for
evaluations. For Needle-Reach, the baselines [9], [13] that
used BC and IRL, required 100 expert demonstrations. It is
shown in [13] that, when the number of demonstrations is
reduced to just 10, which is still 2x larger than ours, the
success rate drops drastically. For Panda-Reach, the authors
of [14] show that imitation learning outperforms adversarial
IRL techniques when each method uses 50 demonstrations,
though both eventually learn to succeed in the task. This
however is still 10x more than the amount of samples
required by our work.

C. Task - Placing Cube

The specifications for both these tasks are:
1) Placing the cube at the target pose: φ1 :=

F(∥cubepose − targetpose∥ ≤ 0.05).
2) Reaching the target as quickly as possible: φ2 :=

G(t <= 50), where t is the time when the end-effector
reaches the target.

The statistics of the PGA shows that is maximum value is
≈ 6 since there are 2 specifications, each scaled by a factor
of 3.

D. Task - Opening Door

The Panda robot uses operational space control to control
the pose of the end-effector. The horizon for this task is 500
and the control frequency is 20 Hz. The specifications for
both these tasks are:



(a) PGA and Weights (b) RL training summary (c) Success rates on test trials

Fig. 3. Summary of training and evaluations for the Cube-Placing task.

(a) RL training summary (b) PGA and Weights (c) Success rates on test trials

Fig. 4. Summary of training and evaluations for the Door-Opening task.

1) Opening the door: φ1 := F(∠door hinge ≥ 0.3).
Angle is measured in radians.

2) Reaching the door handle: φ2 :=
F(∥ee− door handle∥ < 0.2); end-effector should be
within 2cm of the door handle.

E. Task - Safe Mobile Navigation

The mobile robot consists of two independently driven
parallel wheels and one free-rolling rear wheel, having
similar dynamics as a TurtleBot. The environment contains
8 hazard markers scattered around the map and a single goal
location. The location of the hazards, goal and robot are
randomized for each episode. Traversing any of the hazards
incurs a cost of 1. Due to the map randomization, the optimal
policy may not always be able to ensure complete hazard-
avoidance, and must rather minimize this cost. The robot is
equipped with Lidar that provides 16 measurements each for
the distances between: (i) robot and goal, and (ii) robot and
nearest hazard. The task specifications are:

1) Reaching the goal: φg := F(
∨16

i=1(d
i
g < 0.1)), where

dig is the Lidar’s i-th distance measurement to the goal.
2) Maintaining safety: φs := G(cost < 1), where cost is

the value incurred when the risk-area Lidar detects that
the robot is too close to a hazard. The cost is given by
the formula

∧16
i=1(d

i
l > 0), where dil is the risk-Lidar’s

i-th distance measurement to the nearest hazard.
3) Completing the task within a specific time: φt :=

G(t < T ), where T = 1000 is the maximum episode
time.

The training and evaluation results are shown in Fig. 5.

F. Task - Safe FreightFranka Cabinet Drawer

This setup consist of a Franka Emika Panda manipulator
arm mounted on a Fetch Robotics Freight mobile robot
platform. The environment consists of a cabinet with an open
drawer and a rectangular risk zone. The task for the mobile-
manipulator is to close the drawer while minimizing entry
into the risk zone. The robot is controlled via its joint-space.
The specifications for both these tasks are:

1) Closing the drawer: φg := F(drawery < 0.2). The
drawer must be closed (as measured by its y-axis)
within a 0.2 units tolerance.

2) Maintaining safety: φs := G(cost < 1), where cost is
the value incurred when the risk-area Lidar detects that
the robot is too close to a hazard. The cost is given by
the formula

∧16
i=1(d

i
l > 0), where dil is the risk-Lidar’s

i-th distance measurement to the nearest hazard.
3) Completing the task within a specific time: φt :=

G(t < T ), where T = 192 is the episode horizon.
The training and evaluation results are shown in Fig. 6.
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